Composting: A Durable Technology for Disinfection of Organic Residuals in an Era of Emerging and Re-Emerging Pathogens

Patricia D. Millner
Animal Waste Pathogens Lab
Beltsville Agricultural Research Center

Synopsis of EPA/USDA Workshop 2001

- Pathways of disease transmission
- Pathogens and indicator organisms
- Treatment Technologies / Disinfection
- Regrowth and Prevention
- Knowledge gaps and future focus

POTENTIAL ENVIRONMENTAL AND HEALTH CONCERNS WITH PATHOGENS FROM ORGANIC RESIDUES

- Ground water contamination
- > Surface water contamination
- Edible food crops eaten raw
- > Residuals taken off farms for commercial use
- Bioaerosols and airborne transmission
- Vector dissemination

Sources and Pathways of Pathogen Dissemination

Four Groups of Pathogens involved in Emerging Infectious Disease

- Bacteria
- Parasites
- Viruses
- Prion Proteins

Bacteria

- High Priority
 - Enterohemorrhagic and related *E. coli*
 - Salmonella
 - Listeria monocytogenes
 - Campylobacter
 - Medium Priority
 - Yersinia enterocolitica
 - Clostridium perfringens
 - other pathogenic E. coli
 - Low Priority
 - · Mycobacterium av. paratuberculosis

Parasites

- High Priority
 - Cryptosporidium parvum (bovine, swine, sheep)
 - Giardia lamblia (bovine & swine)
 - Medium Priority
 - Toxoplasma (cats)
 - Microsporidia
 - Ascaris suum (swine)
 - Low Priority
 - Balantidium (swine)

Viruses

- High Priority
 - Rotavirus groups A & B (bovine, swine)
 - Hepatitus E virus (swine & rats)
 - Myxovirus (swine & poultry)
 - Medium Priority
 - Reovirus type 3 et al.
 - Enterovirus (bovine, swine)
 - Calicivirus (bovine, swine)
 - Low Priority
 - · Herpes, Corona, Parvo, Paramyxa,
 - · Hepadna, Retro
 - Vector borne viruses

Prions

- Proteins: cellular (PrPc) and PrPSc
 - PrPc: Sialoglycoprotein bound to cell surface via glycosyl phosphatidyl-inositol anchor
 - PrPSc: proteinase K resistance (partial) and insoluble in non-ionic detergents
- Diseases in animals (PrD)
 - Scrapie: sheep
 - TME: transmissible mink encephalopathy, mink
 - CWD: chronic wasting disease, elk/deer
 - BSE: bovine spongiform encephalopathy, bovines
 - FSE: feline SE, cats (pets and zoos)
 - mCJD: murine CJD, mouse or rat (test subjects)

Indicator Organisms

Uses

- Presence/persistence
- Treatment technology effectiveness

Characteristics

- Representative of pathogens, but conservative
 - more resistant than pathogen
- Present in all manures, biosolids, residuals, tissues
- Easily detectable by a reliable method
- Susceptible to destruction technologies

Indicator Organisms

- Presence
 - No single indicator
 - Indicators á pathogens

Fecal Coliforms or E. coli

- Treatment
 - Suggested indicators Bacteria
 - B. subtilis
 - Clostridium
 - Enterococci
 - Viruses
 - Enterovirus
 - Reovirus
 - Prions: PrP only in cases of identified mortalities and sheep offal

Treatment Technologies

- Bacterial Disinfection

	Log		Relative
Treatment	Reduction	Stress	Cost
Lagoon	1-3	time	M
Const. Wetland	2-3	time, filtration	М
Deep Stack	1-?	NH3, heat	L-M
Digestion			
- Mesophilic	1-2		M
- Thermophilic	5	time; heat	Н
Composting	1-5	heat, time	L-M
Air Dry	1-2	dessication	L-M
	4 -		
Heat Dry	4-5	heat, dessication	Н
Pasteurization	5	time, heat	Н
Alkaline Process	3-5	heat, NH3	M

Treatment Technologies - Virus

Treatment	Log Reduction	Animal Systems
Lagoon	1-3	beef, dairy, swine
Const. Wetland	1-2	beef, dairy, swine
Deep Stack	?	poultry, beef, dairy
Digestion		
- Mesophilic	1-2	
- Thermophilic	3->4	beef, dairy, swine
Composting	1-5	All
	1-2 pH<11	
Alkaline process	3-4 pH>11	All
	3-4 55-60°C	
Thermal Process	>4 >60°C	AII
Drying and Dry	<1 at >3% Moisture	
Storage	>3 at <1% Moisture	All

LIMITING CONDITIONS FOR PATHOGEN GROWTH

Pathogen	Min. pH	Max. pH	Min. temp	Max. temp
Bacillus cereus	4.3	9.3	4 °C	55 °C
Campylobacter jejuni	4.9	9.5	30 °C	45 °C
Clostridium perfringens	5.0	9.0	10 °C	52 °C
Escherichia coli (enteropathogenic strains)	4.0	9.0	7 °C	49.4 °C
Listeria monocytogenes	4.4	9.4	0.4 °C	45 °C
PrProtein	?	12-14	?	>600°C
Salmonella spp.	3.7	9.5	5.2 °C	46.2 °C
Shigella spp.	4.8	9.3	6.1 °C	47.1 °C
Staphylococcus aureus	4.0	10.0	7 °C	50 °C
Vibrio cholerae	5.0	10.0	10 °C	43 °C
Vibrio parahaemolyticus	4.8	11.0	5 °C	44 °C
Yersinia enterocolitica	4.2	10.0	-1.3 °C	42 °C

SOURCE: US FDA, except PrPtotein (Sreevatsan, 2002

Prion Inactivation

- Presence: mostly in brain and spinal cord
- Treatments to Inactivate
 - Hardy and difficult to destroy (PrPSc)
 - Boiling or autoclaving alone are insufficient
 - Prolonged proteolytic enzyme digestion (partial)
 - High pH lime for 1 hr gives 1 log₁₀ reduction
 - Slow decay in soil: 1% detected after 3 yr
 - Guanidine thiocyanate (>0.75), >3M Urea, pH=10 decreased protease resistance of PrPSc
 - Dry heat: incineration >600 °C is effective
 - Sodium hydroxide + pressure autoclaving, 132 °C is effective

Types of Composting

- **♦ Static Actively Aerated Pile**
- Agitated Bay
- In-Vessel
- Windrow
- ♦ Bin
- Static Passively
- Aerated Pile
- Vermi-compost

Advanced Alkaline Stabilization

Alkaline Admixture

Solids

pH > 12, 24 hr Solids > 50% Heat pulse: 52-60 C, 12 hr

> Organic Ag Lime

Pathogen destruction
Odor adsorption
Low available P

$$CaO + H2O \Rightarrow Ca(OH)2 + \hat{I}$$

Alkaline Stabilized Manure Products

- Disinfection levels equivalent to Class A biosolids products
- Reduced Odor
- Decreased soluble P
- Enhanced physical properties
- Added Agricultural Value
- Cost effective processing

Beltsville Alkompro Technologies

- Hybrid Alkaline and Compost treatment
- Alkaline Treatment
 - pH 12 + heat, 24-72 hr.
- Ammonia + heat
- Thermophilic Composting
 - Mix alkaline treated material with C sources
 - Heat: 55-70 C via self heating
 - Proteolysis
 - Extended time: 60+ days, if necessary, via
 C & N recharges

Static Aerated Pile

Air Distribution Pattern along Pile Length

Condensate trap for suction aeration

Aerated static pile layout and dimensions.

Mature Sheep Composting Tests - Canada Dchaw@admin.oldscollege.ab.ca

- Sheep offals, heads, and mortalities from slaughterhouse
- Unloaded onto a layer of coarse woodchips (hog fuel) and sawdust. Additional wood chip amendment was added until a 1:1 (v/v) ratio was achieved.
- Offals and woodchip/sawdust were loaded into mixer and allowed to homogenize.
- Mixer is a modified agricultural feed mixer with three augers for blending the material.
- Auger mixers ripped open the stomachs facilitating the composting process.
- On occasion whole carcasses were also placed in the mixer.
- Based on subjective observations, more wood chips were added during mixing to ensure adequate porosity.

Operational Costs-Sheep Composting in Canada

Dchaw@admin.oldscollege.ab.ca

Item	Rate/Unit	Units	Total
Transportation			\$10,400
Technician mixing delivery	\$40/hr	159	6,360
Technician rotating bunkers	\$40/hr	57	2,280
Skid Steer Rental	\$35/hr	117	4,095
Landfill Tipping Fees	\$35/tonne	60	2,100
Transport to Landfill-340km	\$636/trip	2	1,272
Amendment Cost	\$250/load	3	750
Pathogen indicator species	\$160/batch	10	1,600
Total Operational Costs			\$28,857
Total Number Sheep	48/wk	2538	
Total animal inputs	1.84 tonnes/wk	53 wks	86.7 tonnes
Composting cost	\$11.37/head		

Mature Sheep Composting Tests - Canada Dchaw@admin.oldscollege.ab.ca

- Concrete bunkers (filled wkly, 20 cu.m.+)
- Thermocouples in pile, 30 min datalog
- Blowers ON when pile is 70 C
- ♦ O₂, moisture, pH, microbe counts
- Thermophilic range, 45-65 C, 75-80C
- Recontamination by fecal coliforms after peak heat achieved
- Prion analysis in progress

Knowledge Gaps and Future Paths

1. Better Disinfection Methods

- 1. Combined technologies: alkaline pH and prolonged composting, + decomposer consortia enrichment
- 2. Sampling different scenarios and matrices

2. Improved Detection Methods

- 1. Reproducible recovery
- 2. Infectivity assay
- 3. Molecular, immunological, IMS
- 4. Surrogate / indicator comparability

3. Survival: Time/temp/concentration

4. Improved management practices

Cross contamination of handling equipment and facilities

Summary

- Pathways of disease transmission
- 4 Pathogen Groups and Indicators
- Treatment Technologies / Disinfection
- Management Practices
- Knowledge gaps and future focus

